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Summary

Both population based and family based case control studies are used to test whether particular genotypes are
associated with disease. While population based studies have more power, cryptic population stratification can
produce false-positive results. Family-based methods have been introduced to control for this problem. This paper
presents the full likelihood function for family-based association studies for nuclear families ascertained on the basis
of their number of affected and unaffected children. The likelihood of a family factors into the probability of
parental mating type, conditional on offspring phenotypes, times the probability of offspring genotypes given their
phenotypes and the parental mating type. The first factor can be influenced by population stratification, whereas
the latter factor, called the conditional likelihood, is not. The conditional likelihood is used to obtain score tests
with proper size in the presence of population stratification (see also Clayton (1999) and Whittemore & Tu (2000)).
Under either the additive or multiplicative model, the TDT is known to be the optimal score test when the family
has only one affected child. Thus, the class of score tests explored can be considered as a general family of TDT-like
procedures. The relative informativeness of the various mating types is assessed using the Fisher information, which
depends on the number of affected and unaffected offspring and the penetrances. When the additive model is true,
families with parental mating type Aa × Aa are most informative. Under the dominant (recessive) model, however, a
family with mating type Aa × a a (AA × Aa) is more informative than a family with doubly heterozygous (Aa × Aa)
parents. Because we derive explicit formulae for all components of the likelihood, we are able to present tables giving
required sample sizes for dominant, additive and recessive inheritance models.

Introduction

To test whether particular genes are associated with
disease, epidemiologists and geneticists use both
population-based and family-based case-control designs.
Both designs compare frequencies of particular alleles
or genotypes of cases to those of controls. Population-
based case-control designs with unrelated controls have
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greater power for detecting an association, and are easier
to implement compared with family-based case-control
designs (Risch & Teng, 1998; Teng & Risch, 1999;
Witte et al. 1999). However, the population-based case-
control design is subject to spurious association aris-
ing from population stratification (Li, 1969; Lander &
Schork, 1994; Ewens & Spielman, 1995). Family-based
case-control designs are more robust to potential con-
founding from population stratification because they
match the genetic background of the case and control
groups. Although some family-based association tests do
not require parental genotype information (Boehnke &
Langefeld, 1998; Horvath & Laird, 1998; Zhao et al.
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1997), many procedures are based on nuclear families
with genetic marker information from parents and an
affected offspring (Falk & Rubinstein, 1987; Ott, 1989;
Self et al. 1991; Terwilliger & Ott, 1992; Spielman
et al. 1993; Schaid & Summer, 1993; Thomson, 1995;
Schaid, 1996; Kaplan & Martin, 2001). A prime ex-
ample of a family-based association test is the transmis-
sion/disequilibrium test (TDT) (Spielman et al. 1993).
The TDT test relies on data on transmission of marker
alleles from heterozygous parents to affected offspring.
Ewens & Spielman (1995) showed that the TDT is ro-
bust to admixture and population stratification. Curnow
et al. (1998) and Schaid (1998) have examined many ex-
tensions of the TDT and their properties.

Whittemore & Halpern (2003) reviewed and com-
pared three types of procedures for detecting genetic
associations with disease from nuclear families with af-
fected and unaffected offspring, and from more general
pedigrees. One class of procedures is based on the con-
ditional distribution of offspring genotypes given off-
spring disease status and parental genotypes (Self et al.
1991; Schaid & Sommer, 1993; Schaid, 1996;
Clayton & Jones, 1999; Clayton, 1999; Whittemore
& Tu, 2000; Tu et al. 2000; Shih & Whittemore,
2002), sometimes termed as “non-founder statistics”
(Whittemore & Tu, 2000) or “conditional on parental
genotypes” statistics (Schaid & Sommer, 1993).
Clayton (1999), Whittemore & Tu (2000) and Shih &
Whittemore (2002) described a modification that can
be used when some parental genotype information is
missing. Rabinowitz & Laird (2000) proposed condi-
tioning on sufficient statistics for the missing parental
genotypes, to develop so called FBAT tests, while
Rabinowitz (2003) proposed a less restrictive condition-
ing. All of these procedures yield equivalent tests with
complete parental genotype information, the case we
are considering, as does the score procedure of Schaid
& Sommer (1993). Our principal contribution is to give
explicit formulae for all components of the likelihood,
which enables us to derive explicit sample size formulae.
In the discussion, we compare our results with earlier
work on power for FBAT (Lange & Laird, 2002a,b) and
for TDT type tests (Chen & Deng, 2001), the latter
based on Knapp (1999).

In particular, we derive the likelihood function for
nuclear families with both affected and unaffected off-

spring. It factors into three parts: 1) the conditional
parental genotype probabilities given affection status
of offspring; 2) the conditional genotype distribution
of affected offspring given the parental mating type
and affection status of offspring; and 3) the conditional
genotype distribution of unaffected offspring given the
parental mating type and affection status of offspring. We
call the product of the latter two factors the conditional
likelihood. As in Schaid (1996), Clayton (1999) and
Whittemore & Tu (2000), we develop score tests from
the conditional likelihood which are robust against pop-
ulation stratification. The class of conditional likelihood
score tests (CLST) contains the TDT, which is the CLST
under additive or multiplicative models. The TDT is not
equivalent to conditional likelihood score tests derived
under a dominant or recessive genetic model, however.
Because we have explicit formulae for the first compo-
nent of likelihood above, we can calculate the power of
these score tests; we present tables of required sample
sizes for the CLSTs for additive, dominant and recessive
penetrance models.

Methods

Likelihoods

We consider a biallelic candidate disease locus with al-
leles A and a. Nuclear families with ri affected and si

unaffected sibs and their parents are ascertained for an as-
sociation study. Let ti = r i + s i be the sibship size for the
ith family. For notational simplicity, the index i will be
omitted when we discuss the likelihood function, score
function or observed information matrix for a family.
The three penetrances are denoted by

f2 = P{Aff|AA}, f1 = P{Aff|Aa},

f0 = P{Aff|a a},

where “Aff” denotes affected and “Unaff ” unaffected
disease status. The null hypothesis we are interested in
testing is: H0 : f2 = f1 = f0, where the baseline pen-
etrance f 0 is a known constant.

The nine possible joint parental genotypes are rep-
resented by G = (i, j ), where i( j) is the number of
A alleles carried by the first (second) parent. For
example, G = (1, 1) represents the parental mating
type in which both parents are heterozygous with
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Table 1 Conditional Parental Genotype Probabilities for Fami-
lies with r Affected and s Unaffected Sibs

G = (i, j ) Conditional Probability m (r ,s )
i j

(2,2) (r +s
r )

Kr ,s
f r
2 (1 − f2)s g 22

(2,1) (r +s
r )

Kr ,s
( 1

2 )t ( f2 + f1)r [(1 − f2) + (1 − f1)]s g 21

(1,2) (r +s
r )

Kr ,s
( 1

2 )t ( f2 + f1)r [(1 − f2) + (1 − f1)]s g 12

(2,0) (r +s
r )

Kr ,s
f r
1 (1 − f1)s g 20

(0,2) (r +s
r )

Kr ,s
f r
1 (1 − f1)s g 02

(1,1) (r +s
r )

Kr ,s
( 1

4 )t ( f2 + 2 f1 + f0)r

× [(1 − f2) + 2(1 − f1) + (1 − f0)]s g 11

(1, 0) (r +s
r )

Kr ,s
( 1

2 )t ( f1 + f0)r [(1 − f1) + (1 − f0)]s g 10

(0,1) (r +s
r )

Kr ,s
( 1

2 )t ( f1 + f0)r [(1 − f1) + (1 − f0)]s g 01

(0,0) (r +s
r )

Kr ,s
f r
0 (1 − f0)s g 00

genotype Aa. The population frequency of the joint
genotype G = (i, j ) is denoted by g ij = P{G =
(i, j )}. The conditional parental mating type probabil-
ity is m (r ,s )

i j = P{G = (i, j )|Cr = Aff, Cs = Unaff},
where the event that r sibs are affected is denoted by
Cr = Aff, and the event that s sibs are unaffected is de-
noted by Cs = Unaff. Under the null hypothesis, the
conditional mating type probability m (r ,s )

i j is the uncon-

ditional mating type probability gij. Formulae for m (r ,s )
i j

are given in Table 1, where Kr ,s = P{Cr = Aff, Cs =
Unaff}. Derivations of the formulae in Table 1 are given
in Li et al. (2001) and are based on the assumption that
disease risks among family members are conditionally
independent given their genotypes. Note that the gij

need not conform to random mating under Hardy-
Weinberg equilibrium in this analysis.

For any given family, the genotype status of the
offspring can be represented as a random vector
( j2, j1, j0, k2, k1, k0), where ji(ki), i = 0, 1, 2, is the
number of affected (unaffected) sibs with i A alleles.
We have j2 + j1 + j0 = r , and k2 + k1 + k0 = s . The
likelihood function for any given family is

P{ j2, j1, j0, k2, k1, k0, G|Cr = Aff, Cs = Unaff}

= m (r ,s )
G h A

G( j2, j1, j0)hU
G(k2, k1, k0), (1)

where m (r ,s )
G = m (r ,s )

i j with G = (i, j ) and where

h A
G( j2, j1, j0) =

(
r

j2, j1, j0

)(
τG2 f2∑2
l=0 τGl f l

) j2

×
(

τG1 f1∑2
l=0 τGl f l

) j1( τG0 f0∑2
l=0 τGl f l

) j0

(2)

is the conditional genotype distribution of affected off-
spring given both the parental mating type and affection
status of offspring. Similarly,

hU
G(k2, k1, k0) =

(
s

k2, k1, k0

)(
τG2(1 − f2)∑2
l=0 τGl (1 − f l )

)k2

×
(

τG1(1 − f1)∑2
l=0 τGl (1 − f l )

)k1

×
(

τG0(1 − f0)∑2
l=0 τGl (1 − f l )

)k0

(3)

is the conditional genotype distribution of unaffected
offspring given both the parental genotype and affection
status of the offspring. Sometimes hA

G and hU
G are used

in place of hA
G( j2, j1, j0) and hU

G(k2, k1, k0), respectively.
Finally, τG2 = P{C = AA|G} is the conditional prob-
ability that a child has genotype AA given the parental
genotype is G. Similarly, τG1 = P{C = Aa|G} and
τG0 = P{C = aa|G}. The derivation of the likelihood
(1) is given in Appendix A. Notice that hA

G( j2, j1, j0) and
hU

G(k2, k1, k0) do not depend on the population mat-
ing frequencies (gij) or allele frequency (p). Thus, pop-
ulation stratification has no effect on the conditional
likelihoods ((2) and (3)). The conditional mating type
probabilities, m(r,s)

G , however, depend on the population
mating frequencies, gij. Hence, they may be affected by
population stratification. Even if there is random mating
within each of several subpopulations, the gij will differ
among the subpopulations if the allele frequencies vary
among them.

Conditional Likelihood Score Tests for
Additive, Dominant and Recessive
Penetrance Models

We use the conditional likelihoods (2) and (3) to de-
rive the score tests for additive, dominant and reces-
sive penetrance models. The conditional likelihoods (2)
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and (3) are binomial or trinomial distributions for a
given parental mating type and a specific genetic model.
For example, given the parental genotype G = (1, 1) =
Aa × Aa, the likelihood (2) has the trinomial distribu-
tion:

h A
G =

(
r

j2, j1, j0

)(
f2

f2 + 2 f1 + f0

) j2

×
(

2 f1

f2 + 2 f1 + f0

) j1( f0

f2 + 2 f1 + f0

) j0

.

If the mode of inheritance is additive, i.e., f1 = f2+ f0
2 ,

then hA
G becomes

h A
G =

(
r

j2, j1, j0

)(
f2

2( f2 + f0)

) j2(1
2

) j1

×
(

f0

2( f2 + f0)

) j0

.

The likelihood (3), hU
G, has the same structure as hA

G.

Additive Model

Under the additive penetrance model, f1 = f2+ f0
2 , the

null hypothesis H 0 is: f2 = f0 while the alternative hy-
pothesis is Ha : f2 > f0. To derive the conditional score
test for the additive genetic model, one first differentiates
the log conditional likelihood function, log hA

GhU
G, with

respect to f 2 to obtain the score function and then eval-
uates the score function at the null hypothesis f2 = f0

to yield a conditional score for each family. Since fam-
ilies are independent, summing the conditional scores
gives the total conditional score, UAdd in (4). To stan-
dardize UAdd, an estimator of the null variance of UAdd

is needed. Often, the observed information is used as
an estimator of the variance of UAdd under H 0. The
observed information is minus the second derivative of
the sum of the log conditional likelihoods (2) and (3)
evaluated at H0 : f2 = f0. This leads to the total ob-
served information, VAdd in (4). The total score and the
observed information are given by

UAdd =
1

f0(1 − f0)

N∑
i=1

×
{

(1 − f0)
[

j2i − r i τG2 +
1
2

( j1i − r i τG1)
]

− f0

[
k2i − s i τG2 +

1
2

(k1i − s i τG1)
]}

,

VAdd =
1

f 2
0 (1 − f0)2

N∑
i=1

×
{
(1 − f0)2

[
j2i +

1
4

j1i − r i

(
τG2 +

1
2
τG1

)2]

+ f 2
0

[
k2i +

1
4

k1i − s i

(
τG2 +

1
2
τG1

)2]}
. (4)

The probabilities τ G2 and τ G1 in (4) depend on the
parental genotypes, which vary from family to fam-
ily. To simplify notation the index i is not used. Al-
though the statistic TAdd = UAdd√

VAdd
converges in distri-

bution to a standard normal distribution under H 0,
simulations indicate that UAdd and VAdd are highly cor-
related and thus TAdd has a size and power that dif-
fer from those predicted by asymptotic theory unless
samples are very large. Therefore the following vari-
ance estimate is recommended. Note that EH0 ( j2i |G) =
r i τG2, EH0 (k2i |G) = s i τG2, EH0 ( j1i |G) = r i τG1, and
EH0 (k1i |G) = s i τG1. We propose replacing j2i, k2i, j1i,
and k1i by r iτG2, s iτG2, r iτG1, and s iτG1, respectively. The
modified score test statistic is

T∗
Add =

UAdd√
V∗

Add

, (5)

where

V∗
Add =

1
f 2
0 (1 − f0)2

N∑
i=1

×
{
(1− f0)2r i

[
τG2 +

1
4
τG1 −

(
τG2 +

1
2
τG1

)2]

+ f 2
0 s i

[
τG2 +

1
4
τG1 −

(
τG2 +

1
2
τG1

)2]}
.

Unreported simulations indicate that normal theory
predicts the size and power of tests based on T∗

Add very
well.

To compute the power of T∗
Add, we assume that r i = r

and s i = s for i = 1, . . . , N. Under H 0, we have

EH0 (UAdd ) = 0, Var H0 (UAdd ) = Nσ 2
0Add ,

where

σ 2
0Add =

1
16

[
r
f 2
0

+
s

(1 − f0)2

]
[g (21) + 2g 11 + g (10)].

(6)

Here, g (i j ) = g ij + g ji when i �= j . Under Ha, the ex-
pectation and the variance of the score are

EHa (UAdd ) = Nµa Add , Var Ha (UAdd ) = Nσ 2
a Add .
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The formulae and derivations for µaAdd and σ 2
aAdd are

given in Appendix B.
By the law of large numbers, the observed informa-

tion divided by N , V∗
Add/N, converges to σ 2

0Add in prob-
ability under H 0. Under Ha, it converges to σ 2

∗Add in
probability, where

σ 2
∗Add =

1
16

[
r
f 2
0

+
s

(1− f0)2

][
m (r ,s )

(21) + 2m (r ,s )
11 + m (r ,s )

(10)

]
.

When i �= j, m (r ,s )
(i j ) = m (r ,s )

i j + m (r ,s )
j i . Notice that σ 2

∗Add

equals neither σ 2
0Add nor σ 2

aAdd. If the one-sided score
test T∗

Add is used, the sample size formula for level α and
power 1 − β is

NAdd =
(σ∗Add z1−α + σa Add z1−β )2

µ2
a Add

, (7)

where z1−α and z1−β are percentiles of the standard nor-
mal distribution. Under Ha, we f2 = γ 2 f0 for γ 2 > 1.
With f 0 and f 2 specified, all the terms in (7) can be
computed. Kaplan & Martin (2001) studied the power
of tests based on counts of alleles in affected versus unaf-
fected offspring, whereas our statistics are based on indi-
vidual genotypes. Under H 0, the two types of statistics
have different variances (see Sasieni, 1997). Neverthe-
less, our score for the additive model counts alleles and
resembles the methods in Kaplan & Martin (2001), but
our statistics for dominant and recessive models do not
count alleles.

Dominant Model

Under the dominant model, f1 = f2 and H 0 is: f2 =
f0, while Ha is : f2 > f0. The score (U) and the ob-
served information (V) for a sample of N families are

UDom =
1

f0(1 − f0)

N∑
i=1

{(1 − f0)[ j2i + j1i − r i (τG2

+ τG1)] − f0[k2i + k1i − s i (τG2 + τG1)]},

VDom =
1

f 2
0 (1− f0)2

N∑
i=1

{
(1− f0)2

[
j2i + j1i − r i (τG2

+ τG1)2
]
+ f 2

0

[
k2i + k1i − s i (τG2 + τG1)2

]}
.

(8)

As for the additive model, we recommend the mod-
ified score statistic

T∗
Dom =

UDom√
V∗

Dom

, (9)

where

V∗
Dom =

1
f 2
0 (1 − f0)2

N∑
i=1

×
{
(1 − f0)2r i

[
τG2 + τG1 − (τG2 + τG1)2

]
+ f 2

0 s i

[
τG2 + τG1 − (τG2 + τG1)2

]}
. (10)

We compute the power and the required sample sizes
for the test T∗

Dom > z1−α under the assumption r i = r
and s i = s for i = 1, . . . , N. The expectations and
variances of the score UDom under the alternative hy-
potheses can be expressed as EHa (UDom ) = Nµa Dom ,
and Var Ha (UDom ) = Nσ 2

a Dom , which are given in Ap-
pendix C. Setting f2 = f0 in µaDom and σ 2

aDom, yields
the corresponding moments under H 0:

EH0 (UDom ) = Nµ0Dom = 0,

σ 2
0Dom =

1
N

Var H0 (UDom )

=
1
16

[
r
f 2
0

+
s

(1 − f0)2

]
[3g 11 + 4g (10)].

Again, V ∗
Dom/N converges in probability to σ 2

0Dom under
H 0 and to σ 2

∗Dom = 1
16 [ r

f 2
0
+ s

(1− f0)2 ][3m (r ,s )
11 + 4m (r ,s )

(10) ]
under Ha. The sample size formula for a one-sided test
based on T∗

Dom is given by (7) with the parameters µaDom,
σ aDom, and σ ∗Dom in place of µAdd, σ aAdd and σ ∗Add.

Recessive Model

For the recessive model f1 = f0, so the null hypothesis
is f2 = f0 and the alternative hypothesis is Ha : f2 >

f0. The score and the observed information are

URec =
1

f0(1 − f0)

N∑
i=1

{
(1 − f0)( j2i − r i τG2)

− f0

(
k2i − s i τG2

)}
,

VRec =
1

f 2
0 (1 − f0)2

N∑
i=1

{
(1 − f0)2

(
j2i − r i τ

2
G2

)

+ f 2
0

(
k2i − s i τ

2
G2

)}
.

(11)

The modified score test statistic is

T∗
Re c =

URec√
V∗

Re c

, (12)
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where

V∗
Re c =

1
f 2
0 (1 − f0)2

N∑
i=1

{
(1 − f0)2r i (τG2 − τ 2

G2)

+ f 2
0 s i

(
τG2 − τ 2

G2

)}
. (13)

Assuming that r i = r and s i = s for i = 1, . . . , N.

The expectation and variance of the score URec under
the alternative hypotheses can be written as:

EHa (URec ) = Nµa Re c , Var Ha (URec ) = Nσ 2
a Re c .

The formulae for µaRec and σ aRec are presented in Ap-
pendix D. Setting f2 = f0 in these formulae yields the
corresponding moments under H 0, i.e.,

EH0 (URec ) = Nµ0Re c = 0,

Var H0 (URec ) = Nσ 2
0Re c

= N
1
16

[
r
f 2
0

+
s

(1 − f0)2

]

× [4g (21) + 3g 11].

The quantity V∗
Rec/N converges in probability to σ 2

0Rec

under H 0 and to σ 2
∗Rec under Ha, where

σ 2
∗Re c =

1
16

[
r
f 2
0

+
s

(1 − f0)2

][
4m (r ,s )

(21) + 3m (r ,s )
11

]
.

The sample size formula for a one-sided test based on
T∗

Rec is given by (7) with µaRec, σ aRec and σ ∗Rec in place
of µaAdd, σ aAdd and σ ∗Add.

The quantities T∗
Add , T∗

Dom and T∗
Rec involve the back-

ground penetrance parameter f 0 except in the special
cases of no unaffected offspring (s = 0) or no affected
offspring (r = 0). We suggest using background disease
risks and assumptions on the inheritance model to ap-
proximate f 0 (see Discussion). Even if f 0 is misspecified,
tests based on T∗

Add , T∗
Dom and T∗

Rec have proper size. As
we describe in the Discussion, estimates of required sam-
ple size and power calculations are somewhat sensitive
to misspecification of f 0, although, for a given data set,

misspecification of f 0 has relatively little impact on the
test statistics T∗

Add, T∗
Dom and T∗

Rec.

Results

TDT as a Conditional Likelihood Score Test
under Additive or Multiplicative Models

The TDT is an example of a conditional likeli-
hood score test. The original TDT (Spielman et al.
1993) ascertains families which have one affected off-
spring and two heterozygous parents. In the condi-
tional likelihood framework this is equivalent to assum-
ing r = 1, s = 0 and the parental mating type G =
Aa × Aa. The Mendelian genotype transmission prob-
abilities are τG2 = P{C = AA|G = Aa × Aa} = 1

4 ,

τG1 = P{C = Aa|G = Aa × Aa} = 1
2 , and τG0 =

P{C = aa|G = Aa × Aa} = 1
4 . Under the additive

genetic model, the conditional score computed from
(4) is

UAdd =
1

2 f0
( J 2 − J 0). (14)

where J 2 =
∑N

i=1 j2i , J 1 =
∑N

i=1 j1i , J 0 =
∑N

i=1 j0i ,
and N = J 2 + J 1 + J 0 families. Under the H0,

( J 2, J 1, J 0) has a trinomial distribution (N; 1
4 ,

1
2 ,

1
4 ).

Hence,

V∗
Add = Var H0 (UAdd ) =

1
4 f 2

0

N
2

,

which also follows directly from the definition of V∗
Add

following equation (5). Thus,

(
T∗

Add

)2 =
( J 2 − J 0)2

1
2 N

=
(2 J 2 − 2 J 0)2

2N
. (15)

The statistics (15) is the TDT statistic. Under the orig-
inal TDT ascertainment scheme and the multiplicative
genetic model, f2 = γ 2 f0 and f1 = γ f0, the condi-
tional likelihood score test described here also gives
rise to the TDT (Spielman et al. 1993) as noted in
Clayton & Jones (1999). The conditional likelihood
score test statistics for the dominant and recessive mod-
els can be derived similarly. They differ from the TDT
statistic, which is not an optimal test for dominant
and recessive genetic models (Schaid & Sommer, 1993;
Ewens & Spielman, 1995).
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Conditional Fisher Information of the
Conditional Likelihood of the Different
Parental Mating Types

We use the conditional Fisher information, given the
parental mating type, to investigate the informativeness
of different parental mating types under various genetic
models. Under each model, the conditional Fisher in-
formation given parental mating type is

IG( f2) = −E
{

∂2 log h A
GhU

G

∂ f 2
2

∣∣∣∣G
}

= I A
G ( f2) + I U

G ( f2),

which is shown in Table 2 for additive, dominant and
recessive models. Here we use G to denote parental
mating type, rather than joint parental genotypes.

The conditional likelihood, hA
GhU

G, describes the
genotype transmission from parents to offspring and the
affection status of the offspring. All offspring of dou-
bly homozygous parents have the same genotype. For
example, for the mating type G = AA × AA, τG2 = 1
and τG1 = τG0 = 0. Thus, the conditional likelihood
hA

GhU
G is identical to one and the conditional Fisher in-

formation is zero.
Under the additive genetic model, the conditional

Fisher information of doubly heterozygous parents is
twice that of singly heterozygous parents when H 0

holds. When the baseline penetrance f 0 is less than 1
2

and H 0 is true, the conditional Fisher information of

Table 2 Fisher Information in the Conditional Likelihood Given the Parental Mating Types for the Additive, Dominant and Recessive
Genetic Models†

Informative IA
G IU

G

Mating
Type G Ha H 0

‡ Ha H 0

Additive

AA × Aa 2r f 2
0

f2( f2+ f0)(3 f2+ f0)2
r

16 f 2
0

2s (1− f0)2

(1− f2)(1− f2+1− f0)[3(1− f0)+1− f0]2
s

16(1− f0)2

Aa × Aa r f0
2 f2( f2+ f0)2

r
8 f 2

0

s (1− f0)
2(1− f2)(1− f2+1− f0)2

s
8(1− f0)2

Aa × a a 2r f0
( f2+ f0)( f2+3 f0)2

r
16 f 2

0

2s (1− f0)
(1− f2+1− f0)[(1− f2)+3(1− f0)]2

s
16(1− f0)2

Dominant
Aa × Aa 3r f0

f2(3 f2+ f0)2
3r

16 f 2
0

3s (1− f0)
(1− f2)[3(1− f2)+1− f0]2

3s
16(1− f0)2

Aa × a a r f0
f2( f2+ f0)2

r
4 f 2

0

s (1− f0)
(1− f2+1− f0)[(1− f2)+(1− f0)]2

s
4(1− f0)2

Recessive
AA × Aa r f0

f2( f2+ f0)2
r

4 f 2
0

s (1− f0)
(1− f2)(1− f2+1− f0)2

s
4(1− f0)2

Aa × Aa 3r f0
f2( f2+3 f0)2

3r
16 f 2

0

3s (1− f0)
(1− f2)[1− f2+3(1− f0)]2

3s
16(1− f0)2

†: Additive: f1 = f2+ f0
2 ; Dominant: f1 = f2; Recessive: f1 = f0. ‡: H0 : f2 = f0.

Note that G denotes mating type in this table but joint parental genotypes in Table 1.

hA
G is greater than that of hU

G. This means that a fam-
ily with two affected children is more informative than
another family with one affected and one unaffected
child. However, the unaffected offspring do provide in-
formation, and failing to account for their ascertainment
in family-based association studies leads to an incorrect
conditional likelihood.

When the additive model holds, it is well known that
the mating type Aa × Aa is most informative. If the
disease follows a dominant model, there are only two
informative mating types Aa × Aa and Aa × a a . The
results in Table 2 show that the Aa × a a mating type is
more informative than the Aa × Aa mating type. Simi-
larly, for the recessive model, the mating type AA × Aa
is more informative than doubly heterozygous parents.

The original TDT is based on allele transmission
(Spielman et al. 1993) from one parent to an affected
child. A parent-child trio is treated as two indepen-
dent parent-child pairs. If the parental mating type is
AA × Aa, the first parent is not informative while the
second parent is informative. This corresponds to the
fact that the conditional Fisher information of dou-
bly heterozygous parents is approximately twice that of
singly heterozygous parents under the additive model.
The result that the mating type AA × Aa is more infor-
mative than the mating type Aa × Aa under the reces-
sive model suggests that the two transmission processes
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from two parents to the affected child should be consid-
ered jointly, as in the genotype transmission procedure
developed here. Similarly, the mating type AA × Aa is
non-informative while a a × Aa is informative under
the dominant mode of inheritance. That is, whether
or not a heterozygous parent is informative depends on
the genotype of the other homozygous parent. Thus,
especially for dominant or recessive models, or when
the mode of inheritance is unknown, the analysis unit
should be a trio consisting of two parents and one af-
fected child, and the genotype based approach for anal-
ysis is preferable to an allele based approach.

Sample Sizes

To compute sample sizes from a formulae like (7), we
need to compute mating type probabilities conditional
on offspring phenotypes (Table 1). For this purpose we
assume Hardy-Weinberg equilibrium, and we let p de-
note the frequency of the disease allele A.

Tables 3–5 give the total sample size, including
the non-informative families that will be ascertained,
needed to achieve 80% power for a level α = 5 × 10−8.

Table 3a The Required Number of Families for 80% Power with
a One-sided α = 5 × 10−8 Level Test under an Additive Model,
r = 1 Affected and s = 0 Unaffected Offspring

γ f0 = 0.025 f0 = 0.05 f0 = 0.10 f0 = 0.15

p = 0.05 (disease allele frequency)
1.5 2926 2926 2926 2926
1.6 2025 2025 2025 2025
1.7 1488 1488 1488 1488
1.8 1143 1143 1143 1143
1.9 909 909 909 909
2.0 743 743 743 743

p = 0.2
1.5 1090 1090 1090 1090
1.6 788 788 788 788
1.7 605 605 605 605
1.8 485 485 485 485
1.9 402 402 402 402
2.0 342 342 342 342

p = 0.7
1.5 1518 1518 1518 1518
1.6 1202 1202 1202 1202
1.7 1002 1002 1002 1002
1.8 865 865 865 865
1.9 767 767 767 767
2.0 694 694 694 694

Table 3b The Required Number of Families for 80% Power
with a One-sided α = 5 × 10−8 Level Test under an Additive
Model, r = 1 Affected and s = 1 Unaffected Offspring

γ f0 = 0.025 f0 = 0.05 f0 = 0.10 f0 = 0.15

p = 0.05 (disease allele frequency)
1.5 2942 2952 2948 2900
1.6 2039 2049 2049 2017
1.7 1501 1510 1513 1489
1.8 1155 1163 1168 1149
1.9 919 927 933 917
2.0 752 760 765 752

p = 0.2
1.5 1092 1091 1078 1045
1.6 790 789 779 752
1.7 606 606 596 573
1.8 486 485 476 455
1.9 403 402 393 372
2.0 342 341 333 312

p = 0.7
1.5 1508 1491 1433 1332
1.6 1192 1176 1119 1022
1.7 991 974 918 820
1.8 854 837 778 678
1.9 756 738 677 571
2.0 682 663 598 486

Table 3c The Required Number of Families for 80% Power with
a One-sided α = 5 × 10−8 Level Test under an Additive Model,
r = 2 Affected and s = 1 Unaffected Offspring

γ f0 = 0.025 f0 = 0.05 f0 = 0.10 f0 = 0.15

p = 0.05 (disease allele frequency)
1.5 1195 1201 1208 1207
1.6 799 804 811 812
1.7 569 573 579 580
1.8 425 428 434 435
1.9 329 332 337 338
2.0 263 265 269 271

p = 0.2
1.5 502 503 500 493
1.6 362 362 360 354
1.7 278 278 276 270
1.8 224 223 221 215
1.9 186 186 183 177
2.0 159 159 156 149

p = 0.7
1.5 841 834 811 774
1.6 677 670 647 609
1.7 573 565 541 501
1.8 502 493 467 424
1.9 450 441 413 366
2.0 412 402 372 319
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Table 3d The Required Number of Families for 80% Power
with a One-sided α = 5 × 10−8 Level Test under an Additive
Model, r = 1 Affected and s = 2 Unaffected Offspring

γ f0 = 0.025 f0 = 0.05 f0 = 0.10 f0 = 0.15

p = 0.05 (disease allele frequency)
1.5 2958 2979 2972 2885
1.6 2053 2073 2076 2017
1.7 1513 1532 1540 1498
1.8 1166 1183 1194 1163
1.9 930 946 959 935
2.0 762 777 791 772

p = 0.2
1.5 1094 1092 1067 1008
1.6 792 790 770 722
1.7 608 606 589 548
1.8 487 486 470 433
1.9 403 402 387 352
2.0 343 341 326 294

p = 0.7
1.5 1498 1465 1355 1180
1.6 1182 1150 1044 880
1.7 981 948 844 685
1.8 843 810 704 547
1.9 744 710 601 443
2.0 670 634 520 361

Table 4a The Required Number of Families for 80% Power with
a One-sided α = 5 × 10−8 Level Test under a Dominant Model,
r = 1 Affected and s = 0 Unaffected Offspring

γ f0 = 0.025 f0 = 0.05 f0 = 0.10 f0 = 0.15

p = 0.05 (disease allele frequency)
1.5 997 997 997 997
1.6 719 719 719 719
1.7 550 550 550 550
1.8 438 438 438 438
1.9 360 360 360 360
2.0 304 304 304 304

p = 0.2
1.5 477 477 477 477
1.6 361 361 361 361
1.7 289 289 289 289
1.8 241 241 241 241
1.9 207 207 207 207
2.0 181 181 181 181

p = 0.7
1.5 1765 1765 1765 1765
1.6 1420 1420 1420 1420
1.7 1198 1198 1198 1198
1.8 1047 1047 1047 1047
1.9 937 937 937 937
2.0 855 855 855 855

Table 4b The Required Number of Families for 80% Power
with a One-sided α = 5 × 10−8 Level Test under a Dominant
Model, r = 1 Affected and s = 1 Unaffected Offspring

γ f0 = 0.025 f0 = 0.05 f0 = 0.10 f0 = 0.15

p = 0.05 (disease allele frequency)
1.5 1008 1015 1021 1005
1.6 729 736 742 730
1.7 558 565 571 562
1.8 446 452 458 450
1.9 368 374 380 373
2.0 311 317 323 316

p = 0.2
1.5 478 477 468 448
1.6 362 361 353 335
1.7 289 288 281 263
1.8 241 239 232 215
1.9 206 205 197 180
2.0 181 180 172 153

p = 0.7
1.5 1746 1719 1632 1491
1.6 1400 1373 1287 1148
1.7 1179 1151 1063 921
1.8 1026 997 905 756
1.9 916 885 788 629
2.0 833 800 696 525

Table 5a The Required Number of Families for 80% Power with
a One-sided α = 5 × 10−8 Level Test under a Recessive Model,
r = 1 Affected and s = 0 Unaffected Offspring

γ f0 = 0.025 f0 = 0.05 f0 = 0.10 f0 = 0.15

p = 0.05 (disease allele frequency)
1.5 18986 18986 18986 18986
1.6 13063 13063 13063 13063
1.7 9532 9532 9532 9532
1.8 7263 7263 7263 7263
1.9 5721 5721 5721 5721
2.0 4627 4627 4627 4627

p = 0.2
1.5 1446 1446 1446 1446
1.6 1010 1010 1010 1010
1.7 748 748 748 748
1.8 579 579 579 579
1.9 463 463 463 463
2.0 380 380 380 380

p = 0.7
1.5 449 449 449 449
1.6 342 342 342 342
1.7 276 276 276 276
1.8 231 231 231 231
1.9 200 200 200 200
2.0 177 177 177 177
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Table 5b The Required Number of Families for 80% Power
with a One-sided α = 5 × 10−8 Level Test under a Recessive
Model, r = 1 Affected and s = 1 Unaffected Offspring

γ f0 = 0.025 f0 = 0.05 f0 = 0.10 f0 = 0.15

p = 0.05 (disease allele frequency)
1.5 19125 19226 19277 19049
1.6 13184 13279 13356 13223
1.7 9640 9729 9819 9741
1.8 7362 7445 7542 7499
1.9 5812 5891 5992 5972
2.0 4712 4788 4890 4886

p = 0.2
1.5 1456 1463 1464 1442
1.6 1018 1025 1028 1013
1.7 756 762 766 755
1.8 586 591 596 588
1.9 469 475 480 473
2.0 386 391 396 391

p = 0.7
1.5 446 441 427 402
1.6 340 335 322 299
1.7 273 269 255 233
1.8 228 224 211 189
1.9 197 192 179 156
2.0 173 169 154 131

This level was chosen to be consistent with Risch &
Teng (1998) to control the false positive rate in a genome
scan. The focus is on diseases with low baseline pene-
trance (f 0). For each genetic model the number of fam-
ilies with r(s) affected (unaffected) sibs is given. The
relative risk f2/ f0 = γ 2 ranges from 2.25 for γ = 1.5
to 4 for γ = 2.0.

Recessive models (Table 5) require larger samples
than additive ones for p ≤ 0.2 and smaller samples for
p = 0.7 (Table 3). Dominant models tend to require
the smallest samples except when p is large (Table 4). In
families with no unaffected sibs (s = 0) sample sizes do
not depend on f 0, and for families with one affected sib
(r = 1) there is little dependence on f 0, regardless of the
number of unaffected offspring. As shown in Table 3c
and in similar unreported tables for dominant and re-
cessive models, studies of families with two affected off-
spring (r = 2) require substantially smaller samples than
those of families with one affected offspring (r = 1).
Required sample sizes decrease monotonically with dis-
ease allele frequency for recessive models. For additive
and dominant models, required sample sizes increase for
small (p = 0.05) or large (p = 0.7) disease allele fre-
quencies.

Discussion

We present explicit formulae for the conditional dis-
tribution of parental mating types given offspring
phenotypes, and for the conditional distribution of
offspring genotypes given parental genotypes and off-
spring affection status. This latter conditional distribu-
tion has been discussed by Clayton (1999), Clayton &
Jones (1999), Whittemore & Tu (2000) and Shih &
Whittemore (2002), and recommended because the size
of the conditional score test is robust to population
stratification in the case of the full parental genotype in-
formation that we consider. The likelihood is based on
the assumption that familial phenotypes are condition-
ally independent given the individual family members’
genotypes. We present sample sizes needed for families
with one or two affected offspring and for 0, 1 or 2 un-
affected offspring. These calculations indicate that it is
hardly feasible to detect mutations associated with rare
recessive disorders, whereas evaluation of about 1000
families will often yield sufficient power to detect asso-
ciations for genes with a dominant or additive mode of
inheritance and modest allele frequency. Compared to
the dominant model, larger samples are needed for the
additive model for moderate allele frequencies.

Our sample size calculations should agree with those
of Chen & Deng (2001) in the case of r = 1 affected and
s = 0 unaffected offspring. We used a computer pro-
gram downloaded from Dr. Deng’s website to check our
calculations for the additive model. For allele frequency
P (A) = 0.05, f0 = 0.05, f1 = 0.125 and f2 = 0.20,
we calculated that 743 families were needed to a obtain
power of 0.8 for a one-sided α = 5 × 10−8 level test,
whereas the program for the procedure of Chen &
Deng (2001) with two-sided α = 1 × 10−7 yields 731.
For r = 1, s = 2, f0 = 0.15, f1 = 0.375, f2 = 0.6,
however, with other parameters as above, we calculated
that 772 families were required, compare to 911
families from the Chen & Deng program. In a personal
communication, Dr. Deng clarified that the test for
which he computed power put a weight of one on
affected offspring and zero on unaffected offspring.
Thus, for s > 0 our sample size calculations are more
appropriate for statistics like (5), (9) and (12) than
those by Chen & Deng (2001). Lange & Laird (2000a,
2000b) described power calculations for FBAT tests,
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which should be equivalent to our tests when parental
genotype are known. Software at the FBAT web page,
http://www.biostat.harvard.edu/∼ fbat/default.html,
indicates that sample size for FBAT can be computed
subject to the restriction s ≤ 1 unaffected offspring. We
were surprised that the results from this program were
very different from ours for dominant and recessive
models. For example, for a recessive model with disease
allele frequency P (A) = 0.2, f0 = 0.05, f1 = 0.05
and f2 = 0.2, α = 5 × 10−8, with r = 1 affected and
s = 0 unaffected offspring, our calculations indicated
that 380 families yielded power of 0.8, a result con-
firmed by simulation, whereas the FBAT program
yielded a power of 0.0576 for 380 families.

If one chooses a statistic that does not correspond to
the true mode of inheritance, power losses can be sub-
stantial. In the previous example of a recessive disease,
the simulated power for the correct recessive score test
was 0.8288, whereas the simulated power for the addi-
tive score test was only 0.0824. If the mode of inher-
itance is unknown, one could use all three optimum
tests (T∗

Add, T∗
Dom, T∗

Rec) with a Bonferroni correction.
The efficiency robustness literature (Gastwirth, 1966;
Whittemore & Tu, 1998; Gastwirth & Freidlin, 2000;
Zheng et al. 2002) enables one to obtain a more powerful
procedure. One needs to compute the null correlations
of the optimum statistics for three modes of inheritance
- additive, dominant, and recessive. From equations (4),
(8), and (11), these are

ρAD =
2(g 11 + g (10))√

(g (21) + 2g 11 + g (10))(3g 11 + 4g (10))

ρAR =
2(g 11 + g (21))√

(g (21) + 2g 11 + g (10))(3g 11 + 4g (21))

ρRD =
g 11√

(3g 11 + 4g (10))(3g 11 + 4g (21))
. (16)

Here, ρAD is the correlation between the additive
and dominant score test statistics, and ρAR and ρRD

are defined similarly. These correlations are functions
of unconditional mating probabilities. Under assump-
tions of Hardy-Weinberg equilibrium and random
mating, they are in turn functions of the allele fre-
quency (p). For p = 0.05, 0.20, 0.70 the correspond-
ing correlations are: ρAD = 0.98, 0.92, 0.60; ρAR =
0.26, 0.50, 0.87; ρRD = 0.06, 0.11, 0.13.

From the numerical values of correlations, when all
three models are plausible, the previous literature indi-
cates that the maximum of the three optimal tests is the
most powerful. Using the joint asymptotic normal dis-
tribution and the null correlations one can determine
the critical values by simulation. When one could elim-
inate the dominant or recessive model, a simple linear
combination (MERT), R = 1√

2(1+ρ12)
(T1 + T2), where

T 1 and T 2 are the remaining optimal test statistics and
ρ 12 is their null correlation, is the best. Further research
is needed to obtain the increase in sample size needed
when applying these procedures to insure good power
against all scientifically plausible models.

Two factors that can affect these sample size calcula-
tions substantially include missing parental data and the
use of markers rather than candidate disease loci. Large
increases in sample size are required to compensate for
the attenuation of signal that results when a marker in
linkage disequilibrium with the disease locus is used in-
stead of the disease locus itself (Abel & Muller-Myhsok,
1998; Tu & Whittemore, 1999; Whittaker & Morris,
2001). Residual familial correlation of phenotypes given
genotypes probably has only a minor affect on power, as
indicated by the findings of Shih & Whittemore (2002),
who allowed for residual familial correlations of pheno-
types. Although the level of the CLSTs is unaffected by
population stratification, under the alternative hypoth-
esis the expectations and variances of the conditional
likelihood score tests depend on the conditional mating
type probabilities (m (r ,s )

i j ). Thus, the power of the con-
ditional likelihood score tests may be affected by popu-
lation stratification.

The calculations in this paper are for candidate dis-
ease loci, for which the assumption of conditional inde-
pendence, used in Appendix A to derive the likelihood
function, is reasonable. However, this assumption is not
valid for markers (Martin et al. 1997). As just mentioned,
if we study marker loci, rather than disease loci, the re-
quired sample sizes can be much larger, as was shown
for the TDT test (Abel & Muller-Myhsok, 1998; Tu &
Whittemore, 1999) and for population-based and dis-
cordant sib-pair case-control studies (Pferffer & Gail,
2003). Although our power calculations do not apply
for markers, the scores UAdd, UDom and URec remain un-
biased for zero under the null hypothesis of no disease
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association with the marker. Standardization by empiri-
cal estimates of the standard deviation of the scores across
families therefore yields a valid test of the null hypoth-
esis, analogous to the procedure in Martin et al. (1997).

To assess the effect of misspecification of f 0, we con-
ducted simulations where families with one affected
(r = 1) and one unaffected (s = 1) offspring are as-
certained. When f 0 is misspecified both in the design
phase, including the determination of the sample size
needed to achieve a nominal power of, say, 0.80, and
in the analysis, the effect on power can be consid-
erable. A 50% underestimate of f 0 has negligible ef-
fect on sample size calculations and power for a domi-
nant model with true f0 ≤ 0.10, p ≤ 0.20 and γ ≤ 2,
but a 50% overestimate of f 0 reduces power to 0.73
with f0 = 0.10, p = 0.2 and γ = 2 and to 0.43 with
f0 = 0.15, p = 0.2 and γ = 2 (unreported data). Un-
der an additive model, the estimated sample size and
power are even more robust to a 50% underestimate of
f 0, but a 50% overestimate again leads to a perceptible
underestimate of the sample size and a decrease in power
from 0.8 to 0.76 when f0 = 0.10, p = 0.2 and γ = 2.
Under a recessive model with γ = 2, a 50% overesti-
mate or underestimate of f 0 has negligible effects on
power for p ≤ 0.2, but with p = 0.7, a 50% underes-
timate of f 0 leads to power 0.87 for f0 = 0.10 and to
0.92 for f0 = 0.15, whereas a 50% overestimate of f 0

leads to a power of only 0.67 for f0 = 0.10 and 0.35
for f0 = 0.15. As the sample size is the number of fam-
ilies that need to be ascertained, which varies inversely
with f 0, overestimation of f 0 leads to an underestimate
of sample size and reduced power.

For diseases with population disease risk f ≤ 0.1, it
is adequate to set f 0 equal to f . The quantity f over-
estimates f 0, however. Indeed, for a dominant model
f
f0

= (1 − p )2 + [2p (1 − p ) + p2]γ 2, for an additive
model f

f0
= (1 − p )2 + 2p (1 − p )γ + p2γ 2, and for

a recessive model f
f0

= (1 − p )2 + 2p (1 − p ) + p2γ 2.
Thus, we recommend dividing the population risk, f , by
the terms on the right hand sides of these expressions
to estimate f 0 when f exceeds 0.10. A rather strong
genetic effect of γ = 2 and fairly common variant al-
lele frequency p = 0.2 requires dividing f by the fac-
tor 2.08 for a dominant model, by 1.44 for an additive
model, and by 1.12 for a recessive model. Therefore the
required sample sizes could be conservatively estimated

by setting f0 = f
2.08 , but values of f 0 closer to f would

be reasonable if segregation analyses are more consistent
with additive or recessive models.

Although the choice of f 0 can have appreciable impact
if the misspecified f 0 is used both to design and analyze
the study, misspecification of f 0 has relatively little effect
on the analysis of studies with sample sizes based on the
correct f 0. For example, a 50% overestimate of f 0 has
negligible impact on the analyses and power of such
studies with f0 ≤ 0.10. For f0 = 0.15, p = 0.2, and
γ = 2, a 50% overestimate of f 0 in the analysis yields a
power of 0.87 for the dominant model, rather than 0.43
reported above, which results when the over-estimated
f 0 is used both to design and analyze the study.

We recommend a model-based variance estimate V ∗

for normalization of the conditional score statistics. If
there is residual familial correlation of phenotypes given
genotypes, one can use the empirical variance S2 of the
scores, which is robust to such residual correlation, as in
Siegmund et al. (2000). In unreported simulations with
samples of practical size, the size of the tests based on
S2 was near nominal levels, but the power sometimes
approached 0.9, rather than the nominal power of 0.8
predicted by asymptotic theory, particularly for recessive
models with rare alleles. On the other hand, for some
dominant models the power was nearer 0.75 rather than
the predicted 0.80. For this reason we have tabulated
sample sizes based on V ∗ , which agree well with asymp-
totic theory. Sample size calculations for S2 yield similar
results to those in Tables 3–5. Software can be obtained
by contacting the first author (zli@gwu.edu).
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Appendix A: Derivations of Likelihood
Function (1)

P{ j2, j1, j0, k2, k1, k0, G|Cr i = Aff, Csi = Unaff}

=
1

P{G, Cr i = Aff, Csi = Unaff}
× P{G|Cr i = Aff, Csi = Unaff}

× P{Cr i = Aff, Csi = Unaff| j2, j1, j0, k2, k1, k0}

× P{ j2, j1, j0, k2, k1, k0|G}P{G}

=
m (r i ,s i )

G

P{G}P{Cr i = Aff, Csi = Unaff|G}

×
(

r i + s i

r i

)(
r i

j2, j1, j0

)
f j2
2 f j1

1 f j0
0

×
(

s i

k2, k1, k0

)
(1 − f2)k2 (1 − f1)k1

× (1 − f0)k0 P{ j2, j1, j0, k2, k1, k0|G}P{G}

where m (r i ,s i )
G = P{G|Cr i = Aff, Csi = Unaff} is the

conditional mating probability. Using the conditional
independence, we have

P{Cr i = Aff, Csi = Unaff |G}

=
(

r i + s i

r i

)
(P{C1 = Aff |G})r i

× (P{C1 = Unaff |G})s i

=
(

r i + s i

r i

)
(P{C1 = Aff |C1 = AA}

× P{C1 = AA |G} + P{C1 = Aff |C1 = Aa}

× P{C1 = Aa |G} + P{C1 = Aff |C1 = a a}

× P{C1 = a a |G})r i

× (P{C1 = Unaff |C1 = AA}P{C1 = AA |G}

+P{C1 = Unaff |C1 = Aa}P{C1 = Aa |G}

+P{C1 = Unaff |C1 = a a}P{C1 = a a |G})s i

=
(

r i + s i

r i

)(
2∑

l=0

τGl f l

)r i
(

2∑
l=0

τGl (1 − f l )

)s i

where τG2 = P{C1 = AA|G}, τG1 = P{C1 =
Aa|G}, and τG0 = P{C1 = a a |G}, are the genotype
transmission probabilities. We also have

P{ j2, j1, j0, k2, k1, k0 |G} = τ
j2

G2τ
j1

G1τ
j0

G0τ
k2
G2τ

k1
G1τ

k0
G0.

Hence,

P{ j2, j1, j0, k2, k1, k0, G |Cr i = Aff, Csi = Unaff}

= m (r i ,s i )
G

(
r i

j2, j1, j0

)(
s i

k2, k1, k0

)(
τG2 f2∑2
l=0 τGl f l

) j2

×
(

τG1 f1∑2
l=0 τGl f l

) j1(
τG0 f0∑2
l=0 τGl f l

) j0

×
(

τG2(1 − f2)∑2
l=0 τGl (1 − f l )

)k2
(

τG1(1 − f1)∑2
l=0 τGl (1 − f l )

)k1

×
(

τG0(1 − f0)
2∑

l=0

τGl (1 − f l )

)k0

= m (r i ,s i )
G h A

G( j2, j1, j0)hU
G(k2, k1, k0),
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where

h A
G( j2, j1, j0) =

(
r i

j2, j1, j0

)(
τG2 f2∑2
l=0 τGl f l

) j2

×
(

τG1 f1∑2
l=0 τGl f l

) j1(
τG0 f0∑2
l=0 τGl f l

) j0

,

hU
G(k2, k1, k0) =

(
s i

k2, k1, k0

)(
τG2(1 − f2)∑2
l=0 τGl (1 − f l )

)k2

×
(

τG1(1 − f1)∑2
l=0 τGl (1 − f l )

)k1
(

τG0(1 − f0)∑2
l=0 τGl (1 − f l )

)k0

.

Appendix B: Formulas and Derivations of
µaAdd and σ2

aAdd

Assuming that r i = r and s i = s , under the additive
model the score test is

UAdd =
1

f0(1 − f0)

N∑
i=1

×
{

(1 − f0)
[

j2i − r i τG2 +
1
2

( j1i − r i τG1)
]

− f0

[
k2i − s i τG2 +

1
2

(k1i − s i τG1)
]}

To express the expectation of the score under the al-
ternative hypothesis, Ha, we require notation for the
conditional expectations of the scores with respect
to the affected offspring given the parental mating
type:

µA2
G21a = EHa {( j2 − r τG2) |G = (2, 1)}

= r
(

2 f2

3 f2 + f0
− 1

2

)
,

µA2
G11a = EHa {( j2 − r τG2) |G = (1, 1)}

= r
(

f2

2( f2 + f0)
− 1

4

)
,

µA2
G10a = EHa {( j2 − r τG2) |G = (1, 0)} = 0,

µA1
G21a = EHa {( j1 − r τG1) |G = (2, 1)}

= r
(

f2 + f0

3 f2 + f0
− 1

2

)
,

µA1
G11a = EHa {( j1 − r τG1) |G = (1, 1)}

=
r
2
− r

2
= 0,

µA1
G10a = EHa {( j1 − r τG1) |G = (1, 0)}

= r
(

f2 + f0

f2 + 3 f0
− 1

2

)
.

The corresponding unconditional expectations are

µA2
a = EHa ( j2 − r τG2) = µA2

G21a m (r ,s )
(21) + µA2

G11a m (r ,s )
11 ,

µA1
a = EHa ( j1 − r τG1) = µA1

G21a m (r ,s )
(21) + µA1

G10a m (r ,s )
(10) .

The conditional expectations for the unaffected off-
spring given parental mating type are:

µU2
G21a = EHa {(k2 − s τG2)|G = (2, 1)}

= s
(

2(1 − f2)
3(1 − f2) + 1 − f0

− 1
2

)
,

µU2
G11a = EHa {(k2 − s τG2)|G = (1, 1)}

= s
(

1 − f2

2(1 − f2) + 2(1 − f0)
− 1

4

)
,

µU2
G10a = EHa {(k2 − s τG2)|G = (1, 0)} = 0,

µU1
G21a = EHa {(k1 − s τG1)|G = (2, 1)}

= s
(

1 − f2 + 1 − f0

3(1 − f2) + 1 − f0
− 1

2

)
,

µU1
G11a = EHa {(k1 − s τG1)|G = (1, 1)}

=
s
2
− s

2
= 0,

µU1
G10a = EHa {(k1 − s τG1)|G = (1, 0)}

= s
(

1 − f2 + 1 − f0

(1 − f2) + 3(1 − f0)
− 1

2

)
.

The unconditional expectations are

µU2
a = EHa (k2 − s τG2) = µU2

G21a m (r ,s )
(21) + µU2

G11a m (r ,s )
11 ,

µU1
a = EHa (k1 − s τG1) = µU1

G21a m (r ,s )
(21) + µU1

G10a m (r ,s )
(10) .
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Thus,

EHa (UAdd ) = N
f0(1− f0)

{
(1 − f0)EHa ( j2 − r τG2)

+
1
2

(1 − f0)EHa ( j1 − r τG1)

− f0 EHa (k2 − s τG2)

− 1
2

f0 EHa (k1 − s τG1)
}

= Nµa Add ,

where

µa Add =
1

f0(1 − f0)

{
(1 − f0)µA2

a +
1
2

(1 − f0)µA1
a

− f0µ
U2
a − 1

2
f0µ

U1
a

}
.

The conditional variances of the scores for the affected
offspring are:

σ A2
G21a = Var Ha {( j2 − r τG2)|G = (2, 1)}

= r r
2 f2( f2 + f0)
(3 f2 + f0)2

,

σ A2
G11a = Var Ha {( j2 − r τG2)|G = (1, 1)}

= r r
f2( f2 + 2 f0)
[2( f2 + f0)]2

,

σ A2
G10a = Var Ha {( j2 − r τG2)|G = (1, 0)} = 0,

σ A1
G21a = Var Ha {( j1 − r τG1)|G = (2, 1)}

= r r
2 f2( f2 + f0)
(3 f2 + f0)2

,

σ A1
G11a = Var Ha {( j1 − r τG1)|G = (1, 1)} = r

r
4
,

σ A1
G10a = Var Ha {( j1 − r τG1)|G = (1, 0)}

= r r
2 f0( f2 + f0)
( f2 + 3 f0)2

.

The variances of the scores for the affected offspring are:

σ A2
a =Var Ha ( j2 − r τG2) =Var (EHa {( j2 − r τG2)|G})

+ E(Var Ha {( j2 − r τG2)|G}) =
(
µA2

G21a

)2
m (r ,s )

(21)

+
(
µA2

G11a

)2
m (r ,s )

11 −
[
µA2

G21a m (r ,s )
(21) + µA2

G11a m (r ,s )
11

]2

+ σ A2
G21a m (r ,s )

(21) + σ A2
G11a m (r ,s )

11 ,

σ A1
a = Var Ha ( j1 − r τG1)

= Var (EHa {( j1 − r τG1)|G})

+E(Var Ha {( j1 − r τG1)|G})

=
(
µA1

G21a

)2
m (r ,s )

(21) +
(
µA1

G10a

)2
m (r ,s )

(10)

−
[
µA1

G21a m (r ,s )
(21) + µA1

G10a m (r ,s )
(10)

]2

+ σ A1
G21a m (r ,s )

(21) +
r
4

m (r ,s )
11 + σ A1

G10a m (r ,s )
(10) .

The conditional variances of the scores for unaffected
offspring are:

σU2
G21a = Var Ha {(k2 − s τG2)|G = (2, 1)}

= s
2(1 − f2)(1 − f2 + 1 − f0)

[3(1 − f2) + 1 − f0]2
,

σU2
G11a = Var Ha {(k2 − s τG2)|G = (1, 1)}

= s
(1 − f2)(1 − f2 + 2(1 − f0))

[2(1 − f2) + 2(1 − f0)]2
,

σU2
G10a = Var Ha {(k2 − s τG2)|G = (1, 0)} = 0,

σU1
G21a = Var Ha {(k1 − s τG1)|G = (2, 1)}

= s
2(1 − f2)(1 − f2 + 1 − f0)

[3(1 − f2) + 1 − f0]2
,

σU1
G11a = Var Ha {(k1 − s τG1)|G = (1, 1)} =

s
4
,

σU1
G10a = Var Ha {(k1 − s τG1)|G = (1, 0)}

= s
2(1 − f0)(1 − f2 + 1 − f0)

[1 − f2 + 3(1 − f0)]2
.

The variances of the score of unaffected offspring are:

σU2
a = Var Ha (k2 − s τG2)

= Var (EHa {(k2 − s τG2)|G})

+E(Var Ha {(k2 − s τG2)|G})

=
(
µU2

G21a

)2
m (r ,s )

(21) +
(
µU2

G11a

)2
m (r ,s )

11 −
[
µU2

G21a m (r ,s )
(21)

+µU2
G11a m (r ,s )

11

]2 + σU2
G21a m (r ,s )

(21) + σU2
G11a m (r ,s )

11 ,
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σU1
a = Var Ha (k1 − s τG1)

= Var (EHa {(k1 − s τG1)|G})

+E(Var Ha {(k1 − s τG1)|G})

=
(
µU1

G21a

)2
m (r ,s )

(21) +
(
µU1

G10a

)2
m (r ,s )

(10)

−
[
µU1

G21a m (r ,s )
(21) + µU1

G10a m (r ,s )
(10)

]2

+σU1
G21a m (r ,s )

(21) + s
4m (r ,s )

11 + σU1
G10a m (r ,s )

(10) .

The six covariance terms are:

σ A21
a = Cov Ha ( j2 − r τG2, j1 − r τG1)

=
[
r (r − 1)

2 f2( f2 + f0)
(3 f2 + f0)2

− r 2

4

]
m (r ,s )

(21)

− r f2

4( f2 + f0)
m (r ,s )

11 − µA2
a µA1

a ,

σU21
a = Cov Ha (k2 − s τG2, k1 − s τG1)

=
[
s (s − 1)

2(1 − f2)(1 − f2 + 1 − f0)
(3(1 − f2) + 1 − f0)2

− s 2

4

]
m (r ,s )

(21)

− s (1 − f2)
4(1 − f2) + 4(1 − f0)

m (r ,s )
11 − µU2

a µU1
a ,

σ A2U2
a = Cov Ha ( j2 − r τG2, k2 − s τG2)

= µA2
G21a µ

U2
G21a m (r ,s )

(21) + µA2
G11a µ

U2
G11a m (r ,s )

11

−µA2
a µU2

a ,

σ A2U1
a = Cov Ha ( j2 − r τG2, k1 − s τG1)

= µA2
G21a µ

U1
G21a m (r ,s )

(21) − µA2
a µU1

a ,

σ A1U2
a = Cov Ha ( j1 − r τG1, k2 − s τG2)

= µA1
G21a µ

U2
G21a m (r ,s )

(21) − µA1
a µU2

a ,

σ A1U1
a = Cov Ha ( j1 − r τG1, k1 − s τG1)

= µA1
G21a µ

U1
G21a m (r ,s )

(21) + µA1
G10a µ

U1
G10a m (r ,s )

(10)

−µA1
a µU1

a .

The variance of the score statistic under the additive
genetic model and alternative hypothesis is given by

Var Ha (UAdd ) = Nσ 2
a Add ,

where

σ 2
a Add =

1
f 2
0 (1 − f0)2

{
(1 − f0)2σ A2

a +
1
4

(1 − f0)2σ A1
a

+ (1 − f0)2σ A21
a

+ f 2
0 σU2

a +
1
4

f 2
0 σU1

a + f 2
0 σU21

a

− 2(1 − f0) f0σ
A2U2

a

− (1 − f0) f0σ
A2U1

a − (1 − f0) f0σ
A1U2

a

− 1
2

(1 − f0) f0σ
A1U1

a

}
.

Appendix C: Formulae for the Dominant
Model

µa Dom =
r
f0

[(
3 f2

3 f2 + f0
− 3

4

)
m (r ,s )

11

+
(

f2

f2 + f0
− 1

2

)
m (r ,s )

(10)

]

− s
1− f0

[(
3(1− f2)

3(1− f2) + 1 − f0
− 3

4

)
m (r ,s )

11

+
(

1 − f2

1 − f2 + 1 − f0
− 1

2

)
m (r ,s )

(10)

]
.

Var Ha (UDom ) = Nσ 2
a Dom ,

where

σ 2
a Dom =

1
f 2
0

Var Ha [ j2 + j1 − r (τG2 + τG1)]

+
1

(1 − f0)2
Var Ha [k2 + k1 − s (τG2 + τG1)]

− 2
f0(1 − f0)

Cov Ha [ j2 + j2 − r (τG2 + τG1),

k2 + k1 − s (τG2 + τG1)].
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The variances and covariance in the above formula are
given by

Var Ha [ j2 + j1 − r (τG2 + τG1)]

= r 2

(
3 f2

3 f2 + f0
− 3

4

)2

m (r ,s )
11

+ r 2

(
f2

f2 + f0
− 1

2

)2

m (r ,s )
(10)

− r 2

[(
3 f2

3 f2 + f0
− 3

4

)
m (r ,s )

11

+
(

f2

f2 + f0
− 1

2

)
m (r ,s )

(10)

]2

+ r
3 f2 f0

(3 f2 + f0)2
m (r ,s )

11 + r
f2 f0

( f2 + f0)2
m (r ,s )

(10) ,

Var Ha [k2 + k1 − s (τG2 + τG1)]

= s 2

(
3(1 − f2)

3(1 − f2) + 1 − f0
− 3

4

)2

m (r ,s )
11

+ s 2

(
1 − f2

1 − f2 + 1 − f0
− 1

2

)2

m (r ,s )
(10)

− s 2

[(
3(1 − f2)

3(1 − f2) + 1 − f0
− 3

4

)
m (r ,s )

11

+
(

1 − f2

1 − f2 + 1 − f0
− 1

2

)
m (r ,s )

(10)

]2

+ s
3(1 − f2)(1 − f0)

(3(1 − f2) + 1 − f0)2
m (r ,s )

11

+ s
(1 − f2)(1 − f0)

(1 − f2 + 1 − f0)2
m (r ,s )

(10) ,

Cov Ha [ j2 + j1 − r (τG2 + τG1),

k2 + k1 − s (τG2 + τG1)]

= r s
(

3 f2

3 f2 + f0
− 3

4

)

×
(

3(1 − f2)
3(1 − f2) + 1 − f0

− 3
4

)
m (r ,s )

11

+ r s
(

f2

f2 + f0
− 1

2

)

×
(

1 − f2

1 − f2 + 1 − f0
− 1

2

)
m (r ,s )

(10)

− r s
[(

3 f2

3 f2 + f0
− 3

4

)
m (r ,s )

11

+
(

f2

f2 + f0
− 1

2

)
m (r ,s )

(10)

]

×
[(

3(1 − f2)
3(1 − f2) + 1 − f0

− 3
4

)
m (r ,s )

11

+
(

1 − f2

1 − f2 + 1 − f0
− 1

2

)
m (r ,s )

(10)

]
.

Appendix D: Formulae for the Recessive
Model

µa Re c =
r
f0

[(
f2

f2 + f0
− 1

2

)
m (r ,s )

(21)

+
(

f2

f2 + 3 f0
− 1

4

)
m (r ,s )

11

]

− s
1 − f0

[(
1 − f2

1 − f2 + 1 − f0
− 1

2

)
m (r ,s )

(21)

+
(

1 − f2

1 − f2 + 3(1 − f0)
− 1

4

)
m (r ,s )

11

]
.

Likewise,

Var Ha (URec ) = Nσ 2
a Re c .

where

σ 2
a Re c =

1
f 2
0

Var Ha ( j2 − r τG2)

+
1

(1 − f0)2
Var Ha (k2 − s τG2)

− 2
f0(1 − f0)

Cov Ha ( j2 − r τG2, k2 − s τG2),

Var Ha ( j2 − r τG2) = r 2

(
f2

f2 + f0
− 1

2

)2

m (r ,s )
(21)

+ r 2

(
f2

f2 + 3 f0
− 1

4

)2

m (r ,s )
11

− r 2

[(
f2

f2 + f0
− 1

2

)
m (r ,s )

(21)

+
(

f2

f2 + 3 f0
− 1

4

)
m (r ,s )

11

]2

+ r
f2 f0

( f2 + f0)2
m (r ,s )

(21) + r
3 f2 f0

( f2 + 3 f0)2
m (r ,s )

11 ,
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Var Ha (k2 − s τG2) = s 2

(
1 − f2

1 − f2 + 1 − f0
− 1

2

)2

m (r ,s )
(21)

+ s 2

(
1 − f2

1 − f2 + 3(1 − f0)
− 1

4

)2

m (r ,s )
11

− s 2

[(
1 − f2

1 − f2 + 1 − f0
− 1

2

)
m (r ,s )

(21)

+
(

1 − f2

1 − f2 + 3(1 − f0)
− 1

4

)
m (r ,s )

11 ]2

+ s
(1 − f2)(1 − f0)

(1 − f2 + 1 − f0)2
m (r ,s )

(21)

+ s
3(1 − f2)(1 − f0)

(1 − f2 + 3(1 − f0))2
m (r ,s )

11 ,

Cov Ha ( j2 − r τG2, k2 − s τG2) = r s
(

f2

f2 + f0
− 1

2

)

×
(

1 − f2

1 − f2 + 1 − f0
− 1

2

)
m (r ,s )

(21) .

+ r s
(

f2

f2 + 3 f0
− 1

4

)

×
(

1− f2
1− f2+3(1− f0) −

1
4

)
m (r ,s )

11

− r s

[(
f2

f2 + f0
− 1

2

)
m (r ,s )

(21)

+
(

f2

f2 + 3 f0
− 1

4

)
m (r ,s )

11

]

×
[(

1 − f2

1 − f2 + 1 − f0
− 1

2

)
m (r ,s )

(21)

+
(

1 − f2

1 − f2 + 3(1 − f0)
− 1

4

)
m (r ,s )

11

]
.
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